This commit is contained in:
2024-12-21 10:05:20 +00:00
parent 4834cd5221
commit 39c035bb56
138 changed files with 0 additions and 0 deletions

View file

@ -0,0 +1,38 @@
<DIV ALIGN="CENTER">
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20230826094729/FREEIMAGE.HOST/i/HynPmOu"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/EN8OP/fbbce9a794a7204cabe206a9597f714b42b6d535.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240329163848/FREEIMAGE.HOST/i/gegagutotagegashoshagegaozopoingegainogegagegatitotaoshoshatipopotishoshaototatigegagegaoingegainpozoogegashoshagegatotagugega.Jjss3Jf"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/BK1nS/a49811d4e964f2943adf6218e999b882d6e50c24.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20231218122427/FREEIMAGE.HOST/i/osshoshagegasoozooposhoshagegatotagegapoti-currency-shoshashoshatipopotishoshashosha-currency-tipogegatotagegashoshapoozoosogegashoshaos.JquIV6J"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/d3F9c/2d45c925046901519403f2c02b19d85189ba51e4.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240504202202/FREEIMAGE.HOST/i/ingegatotashoshagegazototati-currency-shoshazopoingegainogegashoshatipopotishoshagegaoingegainpozoshosha-currency-titotazogegashoshatotagegain.JrJ41Bp"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/AaI7f/69794ba50a17f4c7421312ff87d96b5f658a6284.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240712023150if_/CDN.GLITCH.GLOBAL/e86044f8-90ad-49b0-bdeb-6472cb4b70ff/%EA%93%A8V%C6%A7.%E2%9A%AAA%E2%9A%AA%C6%A7S%E2%9A%AA%C6%8EET%C6%8EE%D5%88OH%CE%9BI%C6%A7S%E2%9A%AA%C6%A7S%D5%88I8%E1%97%A9%CE%98%E2%9A%AA%CE%98%E1%97%A98I%D5%88%C6%A7S%E2%9A%AA%C6%A7SI%CE%9BHO%D5%88%C6%8EET%C6%8EE%E2%9A%AA%C6%A7S%E2%9A%AAA%E2%9A%AA.SVG?v=1719624391633"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/DMdXL/47c93920923ffcfafcb672b0f808ecb05efaeb3e.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/O-RETOLP-ERUTAWRUC-O-CURWATURE-PLOTER-O.GLITCH.ME">O</A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://GHOSTARCHIVE.ORG/archive/pViHY">O</A>
<BR><A TARGET="_BLANK" HREF="HTTP://ARCHIVE.TODAY/2024.08.18-011705/https://www.desmos.com/calculator/ohyifu6glr">O</A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240523085324if_/GITEA.LOLUMI.COM/O/O/raw/branch/%E2%A0%80/%F0%96%A3%A0%E2%9A%AA%E2%88%A3%E2%9D%81%E2%88%A3%E2%9C%A4%E2%9C%BB%E1%95%AD%E1%95%AE%E1%97%A9%DF%A6%E0%B4%B1%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E0%B4%B1%DF%A6%E1%97%A9%E1%95%AD%E1%95%AE%E2%9C%BB%E2%9C%A4%E2%88%A3%E2%9D%81%E2%88%A3%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%D0%98N%E2%93%84%EA%96%B4%E2%9C%A4%E1%91%90%E1%91%95%D0%98N%E1%91%8E%EA%97%B3%F0%96%A1%97%E1%94%93%E1%94%95%E1%91%8E%EA%96%B4%E2%9A%AD%E1%97%A9%EA%97%B3%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%EA%97%B3%E1%97%A9%E2%9A%AD%EA%96%B4%E1%91%8E%E1%94%93%E1%94%95%F0%96%A1%97%EA%97%B3%E1%91%8E%D0%98N%E1%91%90%E1%91%95%E2%9C%A4%EA%96%B4%E2%93%84%D0%98N%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%E1%97%B1%E1%97%B4%E1%B4%A5%E1%91%8E%E2%9C%A4%E1%97%A9%E1%97%AF%E1%B4%A5%E1%91%8E%E1%91%90%E1%91%95%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E1%91%90%E1%91%95%E1%91%8E%E1%B4%A5%E1%97%AF%E1%97%A9%E2%9C%A4%E1%91%8E%E1%B4%A5%E1%97%B1%E1%97%B4%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%E1%94%93%E1%94%95%E1%B4%A5%E1%97%B1%E1%97%B4%D0%98N%E1%B4%A5%E2%93%84%E1%91%90%E1%91%95%F0%96%A3%93%E2%9C%A4%EC%98%B7%E1%95%A4%E1%95%A6%EA%96%B4%E1%97%A9%E1%B4%A5%E2%9C%A4%E1%94%93%E1%94%95%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E1%94%93%E1%94%95%E2%9C%A4%E1%B4%A5%E1%97%A9%EA%96%B4%E1%95%A4%E1%95%A6%EC%98%B7%E2%9C%A4%F0%96%A3%93%E1%91%90%E1%91%95%E2%93%84%E1%B4%A5%D0%98N%E1%97%B1%E1%97%B4%E1%B4%A5%E1%94%93%E1%94%95%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%E2%9C%A4%D0%98N%E1%97%B1%E1%97%B4%EA%96%B4%E1%97%9D%E1%97%A9%E1%B4%A5%E1%95%A4%E1%95%A6%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E1%95%A4%E1%95%A6%E1%B4%A5%E1%97%A9%E1%97%9D%EA%96%B4%E1%97%B1%E1%97%B4%D0%98N%E2%9C%A4%E2%9A%AA%F0%96%A3%A0/%EA%93%A8%D0%98%EA%9F%BC.%F0%96%A3%A0%E2%9A%AA%E2%9C%A4%D0%98N%E1%97%B1%E1%97%B4%E2%B5%99%E2%86%80%E1%97%A9%E1%B4%A5%E1%95%A4%E1%95%A6%F0%96%A4%9E%E1%94%93%E1%94%95%E1%91%8E%E2%B5%99%E2%9A%AD%E1%97%A9%EA%97%B3%E2%9A%99%E1%97%B1%E1%97%B4%E1%99%81%E1%91%90%E1%91%95%E1%B4%A5%E2%B5%99%E1%91%8E%C2%A4%E1%94%93%E1%94%95%E2%96%A2%E1%94%93%E1%94%95%E1%91%8E%E2%B5%99%E2%9A%AD%E1%97%A9%EA%97%B3%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%EA%97%B3%E1%97%A9%E2%9A%AD%E2%B5%99%E1%91%8E%E1%94%93%E1%94%95%E2%96%A2%E1%94%93%E1%94%95%C2%A4%E1%91%8E%E2%B5%99%E1%B4%A5%E1%91%90%E1%91%95%E1%99%81%E1%97%B1%E1%97%B4%E2%9A%99%EA%97%B3%E1%97%A9%E2%9A%AD%E2%B5%99%E1%91%8E%E1%94%93%E1%94%95%F0%96%A4%9E%E1%95%A4%E1%95%A6%E1%B4%A5%E1%97%A9%E2%86%80%E2%B5%99%E1%97%B1%E1%97%B4%D0%98N%E2%9C%A4%E2%9A%AA%F0%96%A3%A0.PNG"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/nbrVt/0eee08a0bc8bfe81c3bb0d0e40794dbfdf953c76.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240523085324if_/GITEA.LOLUMI.COM/O/O/raw/branch/%E2%A0%80/%F0%96%A3%A0%E2%9A%AA%E2%88%A3%E2%9D%81%E2%88%A3%E2%9C%A4%E2%9C%BB%E1%95%AD%E1%95%AE%E1%97%A9%DF%A6%E0%B4%B1%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E0%B4%B1%DF%A6%E1%97%A9%E1%95%AD%E1%95%AE%E2%9C%BB%E2%9C%A4%E2%88%A3%E2%9D%81%E2%88%A3%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%D0%98N%E2%93%84%EA%96%B4%E2%9C%A4%E1%91%90%E1%91%95%D0%98N%E1%91%8E%EA%97%B3%F0%96%A1%97%E1%94%93%E1%94%95%E1%91%8E%EA%96%B4%E2%9A%AD%E1%97%A9%EA%97%B3%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%EA%97%B3%E1%97%A9%E2%9A%AD%EA%96%B4%E1%91%8E%E1%94%93%E1%94%95%F0%96%A1%97%EA%97%B3%E1%91%8E%D0%98N%E1%91%90%E1%91%95%E2%9C%A4%EA%96%B4%E2%93%84%D0%98N%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%E1%97%B1%E1%97%B4%E1%B4%A5%E1%91%8E%E2%9C%A4%E1%97%A9%E1%97%AF%E1%B4%A5%E1%91%8E%E1%91%90%E1%91%95%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E1%91%90%E1%91%95%E1%91%8E%E1%B4%A5%E1%97%AF%E1%97%A9%E2%9C%A4%E1%91%8E%E1%B4%A5%E1%97%B1%E1%97%B4%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%E1%94%93%E1%94%95%E1%B4%A5%E1%97%B1%E1%97%B4%D0%98N%E1%B4%A5%E2%93%84%E1%91%90%E1%91%95%F0%96%A3%93%E2%9C%A4%EC%98%B7%E1%95%A4%E1%95%A6%EA%96%B4%E1%97%A9%E1%B4%A5%E2%9C%A4%E1%94%93%E1%94%95%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E1%94%93%E1%94%95%E2%9C%A4%E1%B4%A5%E1%97%A9%EA%96%B4%E1%95%A4%E1%95%A6%EC%98%B7%E2%9C%A4%F0%96%A3%93%E1%91%90%E1%91%95%E2%93%84%E1%B4%A5%D0%98N%E1%97%B1%E1%97%B4%E1%B4%A5%E1%94%93%E1%94%95%E2%9A%AA%F0%96%A3%A0/%F0%96%A3%A0%E2%9A%AA%E2%9C%A4%D0%98N%E1%97%B1%E1%97%B4%EA%96%B4%E1%97%9D%E1%97%A9%E1%B4%A5%E1%95%A4%E1%95%A6%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%E1%95%A4%E1%95%A6%E1%B4%A5%E1%97%A9%E1%97%9D%EA%96%B4%E1%97%B1%E1%97%B4%D0%98N%E2%9C%A4%E2%9A%AA%F0%96%A3%A0/%EA%93%A8%D0%98%EA%9F%BC.%F0%96%A3%A0%E2%9A%AA%E2%9C%A4%D0%98N%E1%97%B1%E1%97%B4%E2%B5%99%E2%86%80%E1%97%A9%E1%B4%A5%E1%95%A4%E1%95%A6%F0%96%A4%9E%E1%94%93%E1%94%95%E1%91%8E%E2%B5%99%E2%9A%AD%E1%97%A9%EA%97%B3%E2%9A%99%E1%97%B1%E1%97%B4%E1%99%81%E1%91%90%E1%91%95%E1%B4%A5%E2%B5%99%E1%91%8E%C2%A4%E1%94%93%E1%94%95%E2%96%A2%E1%94%93%E1%94%95%E1%91%8E%E2%B5%99%E2%9A%AD%E1%97%A9%EA%97%B3%E2%9A%AA%F0%94%97%A2%E2%9A%AA%F0%9F%9E%8B%E2%9A%AA%F0%94%97%A2%E2%9A%AA%EA%97%B3%E1%97%A9%E2%9A%AD%E2%B5%99%E1%91%8E%E1%94%93%E1%94%95%E2%96%A2%E1%94%93%E1%94%95%C2%A4%E1%91%8E%E2%B5%99%E1%B4%A5%E1%91%90%E1%91%95%E1%99%81%E1%97%B1%E1%97%B4%E2%9A%99%EA%97%B3%E1%97%A9%E2%9A%AD%E2%B5%99%E1%91%8E%E1%94%93%E1%94%95%F0%96%A4%9E%E1%95%A4%E1%95%A6%E1%B4%A5%E1%97%A9%E2%86%80%E2%B5%99%E1%97%B1%E1%97%B4%D0%98N%E2%9C%A4%E2%9A%AA%F0%96%A3%A0.PNG"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/nbrVt/0eee08a0bc8bfe81c3bb0d0e40794dbfdf953c76.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://ARCHIVE.TODAY/2024.08.18-011705/https://www.desmos.com/calculator/ohyifu6glr">O</A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://GHOSTARCHIVE.ORG/archive/pViHY">O</A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/O-RETOLP-ERUTAWRUC-O-CURWATURE-PLOTER-O.GLITCH.ME">O</A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240712023150if_/CDN.GLITCH.GLOBAL/e86044f8-90ad-49b0-bdeb-6472cb4b70ff/%EA%93%A8V%C6%A7.%E2%9A%AAA%E2%9A%AA%C6%A7S%E2%9A%AA%C6%8EET%C6%8EE%D5%88OH%CE%9BI%C6%A7S%E2%9A%AA%C6%A7S%D5%88I8%E1%97%A9%CE%98%E2%9A%AA%CE%98%E1%97%A98I%D5%88%C6%A7S%E2%9A%AA%C6%A7SI%CE%9BHO%D5%88%C6%8EET%C6%8EE%E2%9A%AA%C6%A7S%E2%9A%AAA%E2%9A%AA.SVG?v=1719624391633"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/DMdXL/47c93920923ffcfafcb672b0f808ecb05efaeb3e.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240504202202/FREEIMAGE.HOST/i/ingegatotashoshagegazototati-currency-shoshazopoingegainogegashoshatipopotishoshagegaoingegainpozoshosha-currency-titotazogegashoshatotagegain.JrJ41Bp"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/AaI7f/69794ba50a17f4c7421312ff87d96b5f658a6284.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20231218122427/FREEIMAGE.HOST/i/osshoshagegasoozooposhoshagegatotagegapoti-currency-shoshashoshatipopotishoshashosha-currency-tipogegatotagegashoshapoozoosogegashoshaos.JquIV6J"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/d3F9c/2d45c925046901519403f2c02b19d85189ba51e4.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20240329163848/FREEIMAGE.HOST/i/gegagutotagegashoshagegaozopoingegainogegagegatitotaoshoshatipopotishoshaototatigegagegaoingegainpozoogegashoshagegatotagugega.Jjss3Jf"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/BK1nS/a49811d4e964f2943adf6218e999b882d6e50c24.png" BORDER="0"></A>
<BR>
<A TARGET="_BLANK" HREF="HTTP://WEB.ARCHIVE.ORG/web/20230826094729/FREEIMAGE.HOST/i/HynPmOu"><IMG STYLE="MAX-WIDTH:850PX;" SRC="HTTP://ARCHIVE.IS/EN8OP/fbbce9a794a7204cabe206a9597f714b42b6d535.png" BORDER="0"></A>
<BR>
</DIV>

View file

@ -0,0 +1,729 @@
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 28894, 721]
NotebookOptionsPosition[ 27728, 692]
NotebookOutlinePosition[ 28613, 718]
CellTagsIndexPosition[ 28570, 715]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{"ClearAll", "[",
RowBox[{"iCurvaturePlotHelper", ",", " ", "CurvaturePlot"}], "]"}], "\n",
RowBox[{
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{
RowBox[{"f_", "?",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Head", "[", "#", "]"}], " ", "=!=", " ", "List"}], " ",
"&"}], ")"}]}], ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}],
"}"}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"sol", ",", " ", "\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ",
"if"}], "}"}], ",", "\n", " ",
RowBox[{
RowBox[{"sol", " ", "=", " ",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{", "\n", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], " ", "==", " ", "f"}],
",", "\n", " ",
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], " ", "==", " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], " ", "==", " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{"\[Theta]", "[", "tmin", "]"}], " ", "==", " ",
"\[Theta]0"}], ",", "\n", " ",
RowBox[{
RowBox[{"x", "[", "tmin", "]"}], " ", "==", " ", "x0"}], ",", "\n",
" ",
RowBox[{
RowBox[{"y", "[", "tmin", "]"}], " ", "==", " ", "y0"}]}], "\n",
" ", "}"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "y"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ",
"opts"}], "]"}]}], ";", "\n", " ",
RowBox[{"if", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "[", "#", "]"}], ",", " ",
RowBox[{"y", "[", "#", "]"}]}], "}"}], " ", "&"}], " ", "/.", " ",
RowBox[{"First", "[", "sol", "]"}]}]}], ";", "\n", " ", "if"}]}],
"\n", " ", "]"}]}], "\n",
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{"f_", ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"CurvaturePlot", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", "0"}], "}"}], ",", " ",
"opts"}], "]"}]}], "\n",
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{"f_", ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"p", " ", ":", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}],
"}"}]}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ", "sol", ",", " ",
"rlsplot", ",", " ", "rlsndsolve", ",", " ", "if", ",", " ", "ifs"}],
"}"}], ",", "\n", " ",
RowBox[{
RowBox[{"rlsplot", " ", "=", " ",
RowBox[{"FilterRules", "[",
RowBox[{
RowBox[{"{", "opts", "}"}], ",", " ",
RowBox[{"Options", "[", "ParametricPlot", "]"}]}], "]"}]}], ";", "\n",
" ",
RowBox[{"rlsndsolve", " ", "=", " ",
RowBox[{"FilterRules", "[",
RowBox[{
RowBox[{"{", "opts", "}"}], ",", " ",
RowBox[{"Options", "[", "NDSolve", "]"}]}], "]"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Head", "[", "f", "]"}], " ", "===", " ", "List"}], ",", "\n",
" ",
RowBox[{
RowBox[{"ifs", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{"#", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ", "p", ",", " ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}],
"]"}], " ", "&"}], " ", "/@", " ", "f"}]}], ";", "\n", " ",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{"#", "[", "tplot", "]"}], " ", "&"}], " ", "/@", " ",
"ifs"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}],
"]"}]}], "\n", " ", ",", "\n", " ",
RowBox[{
RowBox[{"if", " ", "=", " ",
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ", "p", ",", " ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}],
"]"}]}], ";", "\n", " ",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"if", "[", "tplot", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}],
"]"}]}]}], "\n", " ", "]"}]}]}], "\n", " ", "]"}]}]}], "Input",
TextAlignment->Center,
FontFamily->"Go Noto Current-Regular",
FontSize->10,
FontWeight->"Normal",
CellLabel->
"4/3/24 21:38:11 \
In[5275]:=",ExpressionUUID->"670c0d5c-4772-49bb-b74f-ae6a69be9ed0"],
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"ariasD", "[",
RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"k", " ",
RowBox[{"(",
RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ",
RowBox[{"n", " ",
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/",
"2"}], ")"}]}], " ",
RowBox[{
RowBox[{"ariasD", "[", "k", "]"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}],
"!"}]}]}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", " ", "0", ",", " ",
RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], ";"}],
"\n",
RowBox[{
RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"prec", " ", "=", " ",
RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", "n", ",", " ", "p",
",", " ", "q", ",", " ", "s", ",", " ", "tol", ",", " ", "w", ",",
" ", "y", ",", " ", "z"}], "}"}], ",", "\n", " ",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", " ", "<", " ", "0"}], ",", " ",
RowBox[{"Return", "[",
RowBox[{"0", ",", " ", "Module"}], "]"}]}], "]"}], ";", " ",
RowBox[{"tol", " ", "=", " ",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", " ",
RowBox[{"z", " ", "=", " ",
RowBox[{"SetPrecision", "[",
RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ";", " ",
RowBox[{"s", " ", "=", " ", "1"}], ";", " ",
RowBox[{"y", " ", "=", " ", "0"}], ";", "\n", " ",
RowBox[{"z", " ", "=", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ",
RowBox[{"1", " ", "-", " ",
RowBox[{"Abs", "[",
RowBox[{"1", " ", "-", " ", "z"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{"q", " ", "=", " ",
RowBox[{"Quotient", "[",
RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}],
",", " ",
RowBox[{"s", " ", "=", " ",
RowBox[{"-", "1"}]}]}], "]"}], ";", "\n", " ",
RowBox[{"1", " ", "-", " ",
RowBox[{"Abs", "[",
RowBox[{"1", " ", "-", " ", "z", " ", "+", " ",
RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n",
" ",
RowBox[{"While", "[",
RowBox[{
RowBox[{"z", " ", ">", " ", "0"}], ",", "\n", " ",
RowBox[{
RowBox[{"n", " ", "=", " ",
RowBox[{"-",
RowBox[{"Floor", "[",
RowBox[{"RealExponent", "[",
RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ",
RowBox[{"p", " ", "=", " ",
RowBox[{"2", "^", "n"}]}], ";", "\n", " ",
RowBox[{"z", " ", "-=", " ",
RowBox[{"1", "/", "p"}]}], ";", " ",
RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", " ",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"w", " ", "=", " ",
RowBox[{
RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ",
RowBox[{"p", " ", "z", " ",
RowBox[{"w", "/",
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}],
")"}]}]}]}]}], ";", " ",
RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", " ",
RowBox[{"y", " ", "=", " ",
RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ",
RowBox[{
RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ",
RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", " ",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"s", " ",
RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}],
"]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ",
RowBox[{"Interval", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[",
RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ",
RowBox[{"TrueQ", "[",
RowBox[{
RowBox[{
RowBox[{"Composition", "[",
RowBox[{
RowBox[{
RowBox[{"BitAnd", "[",
RowBox[{"#", ",", " ",
RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",",
" ", "Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ",
"0"}], "]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ",
RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}],
" ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"n", " ",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}],
" ",
RowBox[{"FabiusF", "[",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n",
RowBox[{
RowBox[{"SetAttributes", "[",
RowBox[{"FabiusF", ",", " ",
RowBox[{"{",
RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}],
";"}]}]}]], "Input",
FontFamily->"Go Noto Current-Regular",
FontSize->10,
FontWeight->"Normal",
CellLabel->
"4/3/24 21:38:11 \
In[5279]:=",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\:15e9", "=", "90"}], ";",
RowBox[{"\:042fR", "=",
RowBox[{"(",
RowBox[{"4", "/", "8"}], ")"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Grid", "[",
RowBox[{"{",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"Manipulate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\:1513\:1515", "=",
RowBox[{"{",
RowBox[{
RowBox[{"WorkingPrecision", "\[Rule]", "\:041fW\:041f"}], ",",
RowBox[{"ImageSize", "\[Rule]", "256"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",",
RowBox[{"PlotPoints", "\[Rule]",
RowBox[{"1", "+",
SuperscriptBox["2", "\[CapitalPi]\[CapitalPi]"]}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Thickness", "[", "0.00001", "]"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]", " ",
RowBox[{"Placed", "[",
RowBox[{"\"\<Expressions\>\"", ",",
RowBox[{"{",
RowBox[{"Center", ",", "Top"}], "}"}]}], "]"}]}], ",",
RowBox[{"PlotRangePadding", "\[Rule]",
RowBox[{"4", "/", "256"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", " ", "Full"}], ",",
RowBox[{"Frame", "\[Rule]", " ", "True"}], ",",
RowBox[{"Axes", "\[Rule]", " ", "False"}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{", "0", "}"}], ",",
RowBox[{"{", "0", "}"}]}], "}"}]}], " ", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"GrayLevel", "[",
RowBox[{"168", "/", "256"}], "]"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]", " ",
RowBox[{"GrayLevel", "[",
RowBox[{"178", "/", "256"}], "]"}]}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"\:1586\:1587", "=",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{
RowBox[{
RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi"}]}], "}"}]}],
";", "\[IndentingNewLine]",
RowBox[{"\:a5f3", "=",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"FabiusF", "[",
RowBox[{
RowBox[{
RowBox[{"x", "/", "\:042fR"}], "/", "Pi"}],
RowBox[{
RowBox[{"(",
RowBox[{"360", "/", "\:15e9"}], ")"}], "/", "4"}]}], "]"}],
"]"}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*",
"\:042fR", "*", "0"}], "<", "x", "<",
RowBox[{
RowBox[{
RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*",
"\:042fR"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"FabiusF", "[",
RowBox[{"1", "-",
RowBox[{"(",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"x", "/", "Pi"}],
RowBox[{
RowBox[{"(",
RowBox[{"360", "/", "\:15e9"}], ")"}], "/", "4"}]}],
")"}], "-", "\:042fR"}], ")"}], "/",
RowBox[{"(",
RowBox[{"1", "-", "\:042fR"}], ")"}]}], ")"}], ")"}]}],
"]"}], "]"}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*",
"\:042fR"}], "<", "x", "<",
RowBox[{
RowBox[{
RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*",
"1"}]}]}], "}"}]}], "}"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Column", "[",
RowBox[{"{",
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"SetAccuracy", "[",
RowBox[{"\:a5f3", ",", "\:041fW\:041f"}], "]"}], ",",
"\:041fW\:041f"}], "]"}], "]"}], ",",
RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",",
RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "16"}], ",", "16", ",",
RowBox[{"1", "/", "2"}]}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "4"}], ",", "4", ",",
RowBox[{"1", "/", "2"}]}], "]"}]}], "}"}]}]}], " ", "]"}],
",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"SetAccuracy", "[",
RowBox[{"\:a5f3", ",", "\:041fW\:041f"}], "]"}], ",",
"\:041fW\:041f"}], "]"}], "]"}], ",",
RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",",
RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], "*", "Pi"}], ",",
RowBox[{"16", "*", "Pi"}], ",",
RowBox[{"Pi", "/", "2"}]}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "1"}], ",", "1", ",",
RowBox[{"1", "/", "2"}]}], "]"}]}], "}"}]}]}], " ", "]"}]}],
"}"}], "]"}]}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\:15e9", ",", "90"}], "}"}], ",", "0", ",", "360", ",",
RowBox[{"1", "/", "256"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\:042fR", ",",
RowBox[{"4", "/", "8"}], ",", "\"\<\[CenterDot]|\[CenterDot]\>\""}],
"}"}], ",", "0", ",", "1", ",",
RowBox[{"1", "/", "256"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[CapitalPi]\[CapitalPi]", ",", "8"}], "}"}], ",", "0", ",",
"16", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\:041fW\:041f", ",", "16"}], "}"}], ",", "0", ",", "64",
",", "1"}], "}"}], "\[IndentingNewLine]", ",",
RowBox[{"FrameMargins", "\[Rule]", "0"}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]", "}"}], "}"}], "]"}]}], "Input",
FontFamily->"Go Noto Current-Regular",
FontSize->10,
FontWeight->"Normal",ExpressionUUID->"adf5a779-403a-4c2b-985b-3306f9c44e28"],
Cell[BoxData[
TagBox[GridBox[{
{
TagBox[
StyleBox[
DynamicModuleBox[{XMPTools`Wrappers`Private`\:15e9$$ = 90,
XMPTools`Wrappers`Private`\:042fR$$ = Rational[1, 2],
XMPTools`Wrappers`Private`\:041fW\:041f$$ = 16,
XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$ = 8,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$,
Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"",
Typeset`specs$$ = {{{
Hold[XMPTools`Wrappers`Private`\:15e9$$], 90}, 0, 360,
Rational[1, 256]}, {{
Hold[XMPTools`Wrappers`Private`\:042fR$$],
Rational[1, 2], "\[CenterDot]|\[CenterDot]"}, 0, 1,
Rational[1, 256]}, {{
Hold[XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$], 8}, 0,
16, 1}, {{
Hold[XMPTools`Wrappers`Private`\:041fW\:041f$$], 16}, 0, 64, 1}},
Typeset`size$$ = {256., {242., 247.}}, Typeset`update$$ = 0,
Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {
XMPTools`Wrappers`Private`\:15e9$$ = 90,
XMPTools`Wrappers`Private`\:042fR$$ = Rational[1, 2],
XMPTools`Wrappers`Private`\:041fW\:041f$$ = 16,
XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$ = 8},
"ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$,
Typeset`initDone$$, Typeset`skipInitDone$$},
"Body" :> (
XMPTools`Wrappers`Private`\:1513\:1515 = {
WorkingPrecision -> XMPTools`Wrappers`Private`\:041fW\:041f$$,
ImageSize -> 256, Axes -> True, MaxRecursion -> 0, PlotPoints ->
1 + 2^XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$,
PlotStyle -> Thickness[0.00001], PlotLegends ->
Placed["Expressions", {Center, Top}], PlotRangePadding -> 4/256,
PlotRange -> Full, Frame -> True, Axes -> False,
GridLines -> {{0}, {0}}, PlotStyle -> GrayLevel[168/256],
FrameStyle -> GrayLevel[178/256]};
XMPTools`Wrappers`Private`\:1586\:1587 = {
XMPTools`Wrappers`Private`x,
0, (XMPTools`Wrappers`Private`\:15e9$$/90) Pi};
XMPTools`Wrappers`Private`\:a5f3 = Piecewise[{{
Abs[
XMPTools`Wrappers`Private`FabiusF[((
XMPTools`Wrappers`Private`x/
XMPTools`Wrappers`Private`\:042fR$$)/
Pi) ((360/XMPTools`Wrappers`Private`\:15e9$$)/
4)]], (((XMPTools`Wrappers`Private`\:15e9$$/90) Pi)
XMPTools`Wrappers`Private`\:042fR$$) 0 <
XMPTools`Wrappers`Private`x < ((
XMPTools`Wrappers`Private`\:15e9$$/90) Pi)
XMPTools`Wrappers`Private`\:042fR$$}, {
Abs[
XMPTools`Wrappers`Private`FabiusF[
1 - ((XMPTools`Wrappers`Private`x/
Pi) ((360/XMPTools`Wrappers`Private`\:15e9$$)/4) -
XMPTools`Wrappers`Private`\:042fR$$)/(1 -
XMPTools`Wrappers`Private`\:042fR$$)]], ((
XMPTools`Wrappers`Private`\:15e9$$/90) Pi)
XMPTools`Wrappers`Private`\:042fR$$ <
XMPTools`Wrappers`Private`x < ((
XMPTools`Wrappers`Private`\:15e9$$/90) Pi) 1}}]; Column[{
XMPTools`Wrappers`Private`CurvaturePlot[
Evaluate[
SetPrecision[
SetAccuracy[
XMPTools`Wrappers`Private`\:a5f3,
XMPTools`Wrappers`Private`\:041fW\:041f$$],
XMPTools`Wrappers`Private`\:041fW\:041f$$]],
Evaluate[XMPTools`Wrappers`Private`\:1586\:1587],
Evaluate[XMPTools`Wrappers`Private`\:1513\:1515], FrameTicks -> {
Range[-16, 16, 1/2],
Range[-4, 4, 1/2]}],
Plot[
Evaluate[
SetPrecision[
SetAccuracy[
XMPTools`Wrappers`Private`\:a5f3,
XMPTools`Wrappers`Private`\:041fW\:041f$$],
XMPTools`Wrappers`Private`\:041fW\:041f$$]],
Evaluate[XMPTools`Wrappers`Private`\:1586\:1587],
Evaluate[XMPTools`Wrappers`Private`\:1513\:1515], FrameTicks -> {
Range[(-16) Pi, 16 Pi, Pi/2],
Range[-1, 1, 1/2]}]}]),
"Specifications" :> {{{XMPTools`Wrappers`Private`\:15e9$$, 90}, 0,
360,
Rational[1, 256]}, {{XMPTools`Wrappers`Private`\:042fR$$,
Rational[1, 2], "\[CenterDot]|\[CenterDot]"}, 0, 1,
Rational[1, 256]}, {{
XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$, 8}, 0, 16,
1}, {{XMPTools`Wrappers`Private`\:041fW\:041f$$, 16}, 0, 64, 1}},
"Options" :> {FrameMargins -> 0}, "DefaultOptions" :> {}],
ImageSizeCache->{281., {312., 317.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]}
},
AutoDelete->False,
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Grid"]], "Output",
FontFamily->"Go Noto Current-Regular",
FontSize->10,ExpressionUUID->"87f7dffd-2a8e-4038-b9bf-2e250155a918"]
}, Open ]]
},
WindowSize->{1672, 980},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)",
StyleDefinitions->Notebook[{
Cell[
StyleData[StyleDefinitions -> "Default.nb"]],
Cell[
StyleData[All], TextAlignment -> Center, FontFamily ->
"Go Noto Current-Regular", FontSize -> 10, FontWeight -> "Normal",
FontSlant -> "Plain", FontTracking -> "Plain",
FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}]},
Visible -> False, FrontEndVersion ->
"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions ->
"PrivateStylesheetFormatting.nb"],
ExpressionUUID->"87e41aa9-dea0-4ea9-92c2-e68f9a3b2137"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 6723, 178, 499, "Input",ExpressionUUID->"670c0d5c-4772-49bb-b74f-ae6a69be9ed0"],
Cell[7284, 200, 6980, 185, 423, "Input",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"],
Cell[CellGroupData[{
Cell[14289, 389, 7382, 181, 289, "Input",ExpressionUUID->"adf5a779-403a-4c2b-985b-3306f9c44e28"],
Cell[21674, 572, 6038, 117, 648, "Output",ExpressionUUID->"87f7dffd-2a8e-4038-b9bf-2e250155a918"]
}, Open ]]
}
]
*)

View file

@ -0,0 +1,35 @@
import plotly.graph_objects as go
import numpy as np
# Define the curvature function
def kappa(x):
return (1-((-((-1)**np.floor(x/np.pi*2)*(np.exp(-1/((x/np.pi*2)-np.floor((x/np.pi*2))))
/(np.exp(-1/((x/np.pi*2)-np.floor((x/np.pi*2))))+np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))))) +
((-1)**np.floor((x/np.pi*2)/1)*(np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))/(np.exp(-1/((x/np.pi*2)-
np.floor((x/np.pi*2))))+np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))))))/2 + .5))
# Generate x values
x_vals = np.linspace(0, 4*np.pi, 1000)
# Compute kappa values
kappa_vals = kappa(x_vals)
# Integrate kappa values to get theta values (angles)
theta_vals = np.cumsum(kappa_vals) * (x_vals[1]-x_vals[0])
# Compute x and y coordinates of the curve
x_coords = np.cumsum(np.cos(theta_vals)) * (x_vals[1]-x_vals[0])
y_coords = np.cumsum(np.sin(theta_vals)) * (x_vals[1]-x_vals[0])
# Create a plot using plotly
fig = go.Figure()
# Add line to the figure for the curve
fig.add_trace(go.Scatter(x=x_coords, y=y_coords, mode='lines', name='Curve'))
# Update layout
fig.update_layout(
autosize=True,
xaxis=dict(scaleanchor='y', scaleratio=1) # this line sets the aspect ratio
)
fig.show()

View file

@ -0,0 +1,714 @@
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 32407, 706]
NotebookOptionsPosition[ 31150, 675]
NotebookOutlinePosition[ 31904, 699]
CellTagsIndexPosition[ 31861, 696]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"T", "=", "64"}], ";",
RowBox[{"OO", "=", "4"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"T", "=", "TTTT"}], ";",
RowBox[{"OO", "=", "OOOO"}], ";"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\:1431", "[", "X_", "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{"T", "*",
RowBox[{"(",
RowBox[{"0.5", "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"Floor", "[",
RowBox[{
RowBox[{"(",
RowBox[{"2", "*", "OO", "*", "X"}], ")"}], "/", "T"}], "]"}]}],
"*",
RowBox[{"(",
RowBox[{
RowBox[{"-", "0.5"}], "+",
RowBox[{"Mod", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"2", "*", "OO", "*", "X"}], ")"}], "/", "T"}], ",",
"1"}], "]"}]}], ")"}]}]}], ")"}]}], ")"}], "/", "64"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\:1431", "[", "X", "]"}], "\[IndentingNewLine]", ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"X", ",", "0", ",", "16"}], "}"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"1", "/", "4"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"0", ",", "16", ",", "4"}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{"0", ",", "16", ",", "1"}], "]"}]}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"StringReplace", "[",
RowBox[{
RowBox[{"ToLowerCase", "[",
RowBox[{"ToString", "[",
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{"ExpandAll", "[",
RowBox[{"\:1431", "[", "X", "]"}], "]"}], "]"}], ",", "InputForm"}],
"]"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<[\>\"", "\[Rule]", " ", "\"\<(\>\""}], ",",
RowBox[{"\"\<]\>\"", "\[Rule]", " ", "\"\<)\>\""}], ",",
RowBox[{"\"\<^\>\"", "\[Rule]", " ", "\"\<**\>\""}], ",",
RowBox[{"\"\<oooo\>\"", "\[Rule]", " ", "\"\<O\>\""}], ",",
RowBox[{"\"\<tt\>\"", "\[Rule]", " ", "\"\<T\>\""}], ",",
RowBox[{"\"\<x\>\"", "\[Rule]", " ", "\"\<X\>\""}], ",",
RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}], ",",
RowBox[{"\"\<mod\>\"", "\[Rule]", " ", "\"\<np.mod\>\""}], ",",
RowBox[{"\"\<i\>\"", "\[Rule]", " ", "\"\<sqrt(-1)\>\""}], ",",
RowBox[{"\"\<pi\>\"", "\[Rule]", " ", "\"\<4*atan(1)\>\""}]}], "}"}]}],
"]"}]}], "Input",
CellLabel->
"5/3/24 07:35:15 \
In[329]:=",ExpressionUUID->"f5f67ce7-c8f0-4363-9182-367f7658508b"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwtzn9MzHEcx/G7tGVqJVKuH9+PLPk5QmNaer2trJEhJKwV6VJtxuw2P/6p
5sb6oSy1NYrQZpYYTozhxi1jXY1dGuOOunH98P3I0JKkvu/+eO3x+vMZmX1o
m9FLp9PFjW/CjUbPa2tvTcL4fWPtNSZ4J4YedhlM0CVNmISVl2rr7hrM0Gnu
QIq96069oRpFmjlIzxl6XGVoBGma8HHZ6cQzBgs+aZrRMGvLqVKDbdJqFE+9
O7/E4ECRZiN27b586/uge1ILfMeKM5IVCT/Np5iXqnqel/1ElKYNR9vXoPbn
MI5pvkSIJdCp149htmYHWroT2zrivYh9g2cF9WG7B7yJdeBX9NqA5oM+xHbB
a7hpeti8acS+x6qxvS3bb/oR+wFt5tj21kUBxLogzvYPX1enE/sJ/UMuZ2fM
DGK70dj36JV/xUxie+AfcU263UHEulGefy+3ISqY2C/4TU3uvMIQYr/CtMJm
CX4+m1gPXDdtZa8jQ4ntw0iB48LCE2HE9mPxOp9/uY/CiR1A8pXIA7dDFGJV
xNb6R7eGK8SqmFMx4n4fqRCr4s/xzmzvJQqxKppTSzLTSSFWxUz9YNponkKs
CleWNWnDQ4VYFW1pzVMynyrEqniQcv7ZEZtCrIqq1Saqa1eIVbE+YEG87FaI
VdH0pHJlja8gVuJoRNbczxmCWInsrTE7P+wTxEpsPqkv7coVxEpE914dtB8W
xEo4LB7rQ7MgViJm05Gs6huCWInwwsRzlbcFsRI+d4JelLYIYiWcIfeXFlsF
sRLlPSOjBx2CWIljwfbl+e8EsRL7N1w05jgFsRJxt8i+xyOIHe/rDtTv/Dbe
pykROKsnNvWHIFbib7Ilb9OQIFYCsW9Pt/4RxEr8Bw77u/Y=
"]], LineBox[CompressedData["
1:eJwVzXlM0wcUB/AKJSIISmVlEpAf5SpQKONUcbwn2zgLyiGgE4aAAytTkGNi
XNeipcKUI2BxA1kdRxDGsVgYwyrNxnR2GC4FESzKJfdPEjuEDNlvf7y8fPJ9
3zzLhLPhJ7VoNNrH1Py/X00bKyq1CPRxH5I8WCch2Graw1SXQP5vHmV/kyQo
FY97y/UIFOYlxffNk+AZ1X7qAwMCyyJKOU+nSWDlS27uZBCoWHrTrR4l4QYr
zavQmMC+TouSySESDBUx/fomBE5JQmNn+0lYW7bX2WpGoCHrZ83KQxL6IntS
N2wIjI9KttWRk8BZPKI/HEJgvV3kXFgSCR2RvK6CwwQWRyWL5uNI+OSeb4ZP
BIEXxBd2XzpKwrFC7mhtDIG8SVmgPJSEfJdtjZmJBC5XLd1m7iNhJlMRxMgh
0J0p4Y8akCDbYBWE1BCopHcuJP26DLt2vNHtXifw+SuL5a/1loHeVdFiVWmJ
70R/yToeLsJp97sj24JZ6FCez1s8tQCNgQmy+/+wsCHVuyuXMQ+aBdOdM1Ir
ZLJV424Ds9AW4a9d9qk1SmPS14azX8O3AeIf5TPWqHVWo5S6zoDli6Bn1WIb
vP8Z/1DH2ynY73W5bLerLV4tWR3qqZiE43t617YM2mLAHye2/3t0AjSqaxNp
Ijtk8qf279l4CTfocZnh1myULUmc28+Mwy51209a3WyUS9hZGnIMdL4RRe5L
t8dF/fUmU+/nQLsd1zLBcEDacbFvlnwYzv3Qco3xuwPulR581Lb6BO45XtE1
OuOI28PGX9z1HwCjoHOcXEMOnm/5qnL5u14Yc+obzFFwkCgRnPjITAWtVWA9
FeeEQj1ttVr3T4ht8TQyf++EH4qDsk12KEEoviUaa3BGWv3raa/wNmiaNa8w
5HExft63kiOogys3xfHqUC7SDvFIN+s6SApfsmkO46LwzhFfb1UtmCkUrSHR
lC+mzAYya6Gg6PMHVxO4qDQsdE9uroYUz+9X9HKovttIzy21DFiXjQO21lH3
q+p1J4EU3u+9aDBcT1m5Ijugug4jS5MDdY1UP5/uH8y8DsXRd2L9fqH6Zg6l
Kc2lsOkQniFWcBExy7FaXQxj/UVV2oNUzjDpcBHkQUfeauLgU8o1B+ihTDGU
eX9hX/2MsmfC4dPNlyC41lnuq6b+HWuarVULofP840eiOSr3k7h6CrJB6uRR
FLZImT+gSmvOgPSJykhLknKReWKjOg3YvNRx5VvKrcl2BwVfAn3Lk5riVcrv
NqLb1fHwss2bH79OWcg2ihZEgYJfzXXZoEw0TOUK/KDcQl+zuUmZRhtQzp30
+Q8dI7zt
"]]},
Annotation[#, "Charting`Private`Tag$37511#1"]& ], {}}, {}},
AspectRatio->NCache[
Rational[1, 4], 0.25],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Full,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 16}, {0., 0.9993622448979592}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{{{0,
FormBox["0", TraditionalForm]}, {4,
FormBox["4", TraditionalForm]}, {8,
FormBox["8", TraditionalForm]}, {12,
FormBox["12", TraditionalForm]}, {16,
FormBox["16", TraditionalForm]}}, {{0,
FormBox["0", TraditionalForm]}, {1,
FormBox["1", TraditionalForm]}, {2,
FormBox["2", TraditionalForm]}, {3,
FormBox["3", TraditionalForm]}, {4,
FormBox["4", TraditionalForm]}, {5,
FormBox["5", TraditionalForm]}, {6,
FormBox["6", TraditionalForm]}, {7,
FormBox["7", TraditionalForm]}, {8,
FormBox["8", TraditionalForm]}, {9,
FormBox["9", TraditionalForm]}, {10,
FormBox["10", TraditionalForm]}, {11,
FormBox["11", TraditionalForm]}, {12,
FormBox["12", TraditionalForm]}, {13,
FormBox["13", TraditionalForm]}, {14,
FormBox["14", TraditionalForm]}, {15,
FormBox["15", TraditionalForm]}, {16,
FormBox["16", TraditionalForm]}}}]], "Output",
CellLabel->
"5/3/24 07:35:15 \
Out[331]=",ExpressionUUID->"c478c8b1-84af-424e-b861-3547031dc110"],
Cell[BoxData["\<\"0.5+(-1)**floor(X/8)*(-0.5+1.*np.mod(X/8,1))\"\>"], "Output",
CellLabel->
"5/3/24 07:35:15 \
Out[332]=",ExpressionUUID->"7827bd56-0553-427f-a3b1-8be64aa742de"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"T", "=", "64"}], ";",
RowBox[{"OO", "=", "4"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"T", "=", "TTTT"}], ";",
RowBox[{"OO", "=", "OOOO"}], ";"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalTheta]", "[", "X_", "]"}], "=",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"T", "/", "2"}], "/", "OO"}], ")"}]}], "/", "X"}], "]"}],
"/",
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"T", "/", "2"}], "/", "OO"}], ")"}]}], "/", "X"}], "]"}],
"+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"T", "/", "2"}], "/", "OO"}], ")"}]}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"T", "/", "2"}], "/", "OO"}], ")"}], "-", "X"}], ")"}]}],
"]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\:018eE", "[", "X_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"Floor", "[",
RowBox[{"X", "/",
RowBox[{"(",
RowBox[{
RowBox[{"T", "/", "2"}], "/", "OO"}], ")"}]}], "]"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"\[CapitalTheta]", "[",
RowBox[{"Mod", "[",
RowBox[{"X", ",",
RowBox[{"(",
RowBox[{
RowBox[{"T", "/", "2"}], "/", "OO"}], ")"}]}], "]"}], "]"}], "-",
".5"}], ")"}]}], "+", ".5"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\:018eE", "[", "X", "]"}], "\[IndentingNewLine]", ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"X", ",", "0", ",", "16"}], "}"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"1", "/", "4"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"0", ",", "16", ",", "4"}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{"0", ",", "16", ",", "1"}], "]"}]}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"StringReplace", "[",
RowBox[{
RowBox[{"ToLowerCase", "[",
RowBox[{"ToString", "[",
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{"ExpandAll", "[",
RowBox[{"\:018eE", "[", "X", "]"}], "]"}], "]"}], ",", "InputForm"}],
"]"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<[\>\"", "\[Rule]", " ", "\"\<(\>\""}], ",",
RowBox[{"\"\<]\>\"", "\[Rule]", " ", "\"\<)\>\""}], ",",
RowBox[{"\"\<^\>\"", "\[Rule]", " ", "\"\<**\>\""}], ",",
RowBox[{"\"\<oooo\>\"", "\[Rule]", " ", "\"\<O\>\""}], ",",
RowBox[{"\"\<tt\>\"", "\[Rule]", " ", "\"\<T\>\""}], ",",
RowBox[{"\"\<x\>\"", "\[Rule]", " ", "\"\<X\>\""}], ",",
RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}], ",",
RowBox[{"\"\<mod\>\"", "\[Rule]", " ", "\"\<np.mod\>\""}], ",",
RowBox[{"\"\<i\>\"", "\[Rule]", " ", "\"\<sqrt(-1)\>\""}], ",",
RowBox[{"\"\<pi\>\"", "\[Rule]", " ", "\"\<4*atan(1)\>\""}]}], "}"}]}],
"]"}]}], "Input",
CellLabel->
"5/3/24 07:35:34 \
In[338]:=",ExpressionUUID->"b4d0054f-f9cf-4438-8d1f-20a75cc5473c"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxF2Xk0Vd/7B/AbDVJJyHAHEYmSlCGVe54dSgMlZGgQSkUaRBJlCKWMUVJJ
yqyEkAzVrYwhkRQZGkwZ7kHmIb991O/zvf/c9VrvZz3n7v2cs/a660hbnzK0
4aHRaHEzaDTqe7tNRxXn102C9u8zU5t+ulnCCf7fKvcjIjMkfP7zjorPT+9J
3PjPpoeHX4RKxP7nxtVXtAMlMv9z9OJdl69JFPxnt4pbBSa5/7OJ7zcemX2F
/3n+oINHXmTRf3apueHSvaT0PxsFND57zvmflXTkBn2s3v1ziGZLRrYDK6bs
n9M0Xx2npf3SLv/nN5p3ZLZxs1r+3zWazl+vK17yrfjnNs3dYfV2O+Xe/7Xn
kKbiDpkkevE/W85m8/Hat7cdrfzrD4vZZw7Uh5rP/PDXz2XZB3P+pL8y/md5
FbbeYpmqZXH/bLiJvcFBt9d/8J8f7mTLVxxf2L+56q+v7mUvVghRMgv/52tH
2Dy+mfov2/657Ay799sXe9l11f/szm7SnPS/duWvpSr92GUR0o96P/81ehzG
fj6w+Z2J/MdpR+dFseMN7H7lu/x1WlIC+8bjID6Z0r/mjKSzvfgyll+VqJl2
S18ue4Xudb+np/866m4Bu9r31K+vxX9tIlrJdivQ3z5ryadp58l8ZsvyKj5S
cv5rYZ7v7PJN/PPNKqbtqZPZwT7r2WHvJVtLGSXn97ElXxVVJLtN2xOtGWUX
TcYq1VRPO9ohcwZxStM7eFLh87QtY/gIcTerXjmvaVuOjgkSnBzYbfBl2r3s
NWKE7Qjr6fnVX6avH35kCSG0bkIo5vK0v5iLLCNyz9Y7ljdO21NGWJE4lPm8
ZlC1jnLk9sC1xPzf4WpLAqZtsNdEg8haczZ8689pe+plAGFx2mjYYUM95XgN
Lx1iduoas7vXp22otHc7kdqzMKegY9rrH300IMwUuRJc+EqZKN63h6AdL3cV
uzVt85zfe4mkpOSviEvZ83dFhyVh2OGnabe5gXLNSroNMS539F5Y5LSHDqy1
I2JtNv/J/00Z7Xy06jShFytzsG17I9Xv5Z0fjsTgjxmchQ8pc5huRi5ElPQ3
qfWj0za+ef8iscXypZe1QRO2pYbyoBdBRkX+8E+gzNEeTPElIhpdtbP+UEav
YwSvEZuY5rFNe5qpvOaSejDRuXfdLL4UyrThX/dCiXfl/BniPN+w04zmSoUT
kt3nD6WsmnYSQ+UOcWbeL2Etc8qeC907o4iiFWYFtT6U/VaUrnpI0LcXOx1P
m66f7NsZR5yyVV9Ga6BsuTShNZEo8Iv7dGPOd+yQuEW0FEI8UeSyggrl0zM+
1aYR9sXe6i8tKPttj/fIIDht/W2G1yjfUEnwfkaIzLa+1Z41na8q7c4hbJdV
6V74TpmpV1n4gnipg0YEF/zAdg1UXPCaEDqcmhinQZlT4Oz2ljjiLWm+4TDl
xN+XVIuIvIeBcyuDKb9xCoBSQvDNRM6hPMp2dYax5cTh78ftRtoov84KVvtA
PKd9pQcK/cR+a2yzs5qYL7W9TJqgzGmwfFBDWEKO2zNbysXtviqfiSwLecUd
NynrvVnOX0/wu99qaOZQnrGge0UjYXFvdqBTN7ZnWVKb/jfiaf5Z9lzxFuwT
ZUFrfhCzG1p67mlj0/YfLtBuIfaOG0WtPUXlxpHz/NqIVPrbncV3qPzhsBjP
L8LM/EFqbx/lg+82JXAJ8qsx/0N6KzYjVa6ql7hswWdjpI3tyWese6KfYH7P
ezXTHpsTaPNLYYDIOHSK/uwGNrIunTN3iNjetvTs0RdUbsP/dP4I8e1YbaV4
G9XPOW7+ujFC4CTb121dG84XbankmyLienubFS0pL847W08DTcfYDU1+2JZi
x0K28sDHQdObwenYtH4N2gdesHOZ14vqqXxfj/iZWTBj/OX2fp52nJsHrFee
AxEXz8TFrKS8z6V83lwovFS3d/ZF7OihvpXSC2D/rMCs7DhsdC96tsVC6L+C
BG3fY6dVj61rFgSpwITCsiUd2LVLN7sIQ/bCfVIXt2JHLxP/+EMEdoYKuCk5
YIeAYZi1KFy4dVb5+htsDvvanjgJEKYr+Gt1YZ82vLLRjgHJkQ2tv4V/4X7K
HMZWFnx+oH3XxAZb/qeKbZIUnJQdHpwThD1S5NjIkYaZCckGOc+wNTzqv7Ut
hbWPF81m8nUCjU9Nr8hyGZQqFVpWKGPT+NuLs+TAMt0lz90cO0Qu/xZDHgKf
NZ/+noztUmw8xVgJsuvDykI/Yhuo25dnK0Ju3hY5nQmqvnJP9REl6OCkfI3X
78L7mcjvR1sDHtpW6mbO2A27eEqH1oBokcj1ufexS2rP9A6vBe0yty32vdgD
TIftTDWI+rQtfU1YN9AyXfuqh9aDmtnkvJ952D5nedr1N0J5fdqRGy3YBoJT
T55qwmizGHNYrQdoAYc1a+MBQqzLnBMtsPcrfHe9i0Cu1b3K/Aq24vUvssc3
gXFn6+X8L9ih1t3zl2pDl/3t7ydmcHH//T1P5urAJVJPc8kKbOOhlqejOpA2
kNHn5YatulQx5fcWmDfltV9XkgSaoM6E2J4dEGFraqG4BVvTKc3aQw9kaxQt
F53Ettutq5+hD0TS50NfX2DPio06wjSAnKTwrGylXqDtuqXA/80QaAe91JO1
sDN4FlyIMoItIvbZkSbYv4PFA6yN4aP7phwvd+xysVRyfA/0GHXn73iP3SOz
KtHZHFTnfmYTP7Ansyd7Du8F15evXyoPYcv0vogz3wdzFG5xFkv2Ae3EseZP
JgdA+s+mguYTfeBJ/1ATWmUJxzIUN1d7YT/b9eX3ISt4ckysqOAmrj9rVDcy
agUbP3YXJ73AHvUxll1zCPYk3ipzXNAPtI9V484VNhB54JLeEWnsAK1XJ9yP
wA+hExVmatjnZ4k6qhyFUxe1KtkHsNuE9jQlHYOrhj3Vc1KwRxfyJZQehw9z
vhiNcbBTYnwvRdqD6Is3Nd012N8St35yPAExyyNqqyawWYskRZRPwYsJrfq7
er/Bk7NUXem0A8x8umpfkOVvoLVndKzsdoDtR8UbPJ2w+S5N3rI7A5+rehpt
IrGviQnXnHSEvviI76u7sdOj9K7cPAvLdnM73voP4PXeHxK2cgW6h+6Gow8G
gHNnx5xhETcQTIn2588eAFRvtlKu3A3G+IyUdv/A9ZmVFT46F+EDJ9uxSWMQ
UGg18Kz2hEKuYKHXzkHgWEdW+4R7Qi7TTnTZ4UGwLE6LK5nyhDgXZs7xYFzv
Kzsc/dkLXJW9/oy0DkL0TJ3A7khvOGVRvytyHNfvLkiuEvKBwwEqD2DREFgK
xTSEXPOBXR2t2pc1sRftWJ7k4Quy0duvCocNAefg64wQzyvwfqGIiBIaBk8E
IWHN/vCWfcKmag/288R2K3zCPD9e9MzpOHaonKzqvECIKXYxzwsfBo74y009
RBC4eDRGbe0ZhpBZHIVzB0NgKRmvcOjOCCjnpoc6LQoDMRbNbXbaCJyu2Z16
1j4M5u8wL08qHIFvawYk/UrCYDh+3qne3hEw6G7nb/G+AeUWpzMv6o6CsrHH
kYA54XDu/XqIGBiFkHSBS6u1b4OAUlZrKd8YeOp/+7g78TbEBioHjDPH8HPR
kG0ncAeq9JbXWWweA6nmDXe9Gu/AyjIRx2XhY8Cp25imdyUSmovJ+KfrxiFC
Q4mvdGY06L6OE6hwnQBx0d2fyZYYaJKSzvoTNAERl9WyGMtjwckzcp9yzASU
XOAWFtjGwgMISwwrmwDO56s6Qb2xMP7CU2svcxLMFknkTfDGQ2ruPuf2F5MQ
gkTPrtVKBLHMRU0zZkxBxDcrpbmMFNgfMG7cIjoFKHZevJtjCjw83FpWpDgF
JZMDoW7lKaC4OCfH32wKNPSCbi31fAJazpY3F6dNwcgWUY+Z3FRQjzSNv7Ga
hgaq5RXbHNLByiL+QGITDSl25uUcupMJz35ol1dq8qAbmr7ipUl5ULvVqy9Q
lweVKNSJTbXkwdCTl6J6hjxoq/RRv+NS+bDObb1VyVEeRFunn912Kx+eC68e
4oRi89jSD159ATk6dKmnHbg+pGaE5fwK8uN7HW/c4EVt84XzPHJfwxu7ewzz
7plIxGCtVeVEIQzKsRemnJiDotsVKz8/eQ88o48EGcv4URinyiPgZA2oT1k+
M3oyH301DiA7reug3Ef1fdGKhei16aud8XuaYElI12gSVxBlbTzvUNLwHbqG
m5s+KQuh1jAFMNzbArGdee8EgoQR+S50u9VYGwiwEsiWFhEU83DqyBbbXxBg
m3UkWlYU7aw3u4POdUEnSvGbt0IUBeYY/Qn26AJd8bhk59WiqLaVE1x3pQt4
im9w9TaIonntluL7IrrgvKyT8+guUTRfLei9aE4XHGlee9nQTRSZHTPRtB3t
gk170uJmVosiLR6rHPbZbohSTCw+9VkUDRR6C7+50A0TvNG/6htE0UK2hh/4
dMPzp8Gr0ttxnlZyfxk+p5QET2UdmBRFqy/23ruX1g3MslWFz+TFECHueV+t
sxuG0KOWYx5iiMPblVlh2gP5sV13z/lg/244N3igBy7xKRpdviqGXAUYB0QP
94DAh8evY8LE0MM6pXPap3tA7uCTqKYEMXRu56Jt2/16wORiupnxBzHE6zfm
Oyu7B7JysstBWhy5g6m6wEIuuLJGvHfKiaOahys6d4lwAXlpbDywUhxNLbVa
cg3/cyjfmpPkqiaOHozz/GmX4ULL59zLWdvE0USFn9Q2DS6IDL1AK8+Io2pV
u6Z7B7ngtLYgU/StOLrPbE+7kMiFI6pS0ddLxNGjD+M/ZVK4YKZ+wX/+e3G0
yfrSz9fpXNi4QdWap04c5VR0b/qRywUerdiFXK448hE6sTeznAvBu33sCukS
6PX+bUfvcbngafRtD5KSQDJHC8bT+rlwZo/mprxlEsg14feevCEumJgPiKUr
SyAOj9zBzD9cYFodLozcIoFc7Pvb1wmQkHxaR8rpjARi3+c5d3klCZFnoueR
5yTQkLn/qjmrSQh0mhiyvSiBHuR2lrmvJeG0S2bFQT8JJMDKfG+4noR1nrJu
O6Ik0NwWvv1B+BwvCJ5Zu/SdBFr99Xui6UESnl23fH2vUgJ15m8kt1qTkBiW
/1j8kwRaftPYfo0NCf63nLwFvkkgumCjbIcdCYb3W5THBiXQq7fGBj1nSWh+
UuBfJU1HhWIRqgeukfChZ2b32uV01DiPVyU3gASO4ma9G4p0VGp+fu3CYBKi
kwvnm66jI7v2Q2YPwkiwji8KbNCjo8Ux6TpHI3H/1tlctiEdVVUX7vSNIkFb
VnfnfVM62rFsRvzdaBJkHxYLWFvTkVGZvE16LAlt90qC28/R0WCCoMGlxyTU
NvD1br1IR+Y6c7oPPSGhmLHNIPkSHW0tql9JpOH13S4VPBFIR03XPQsbMkiw
u/nuev9DOlqtte/J21wSegLKwyYr6GggZ42WdjEJTWXzByw+0lH5komGzBIS
3vPrG3O+0JFhW2bbknckPPGrEPH+SUf83snuP8rx/vu8v8k3in9vYqs+o5oE
y7cCQ7Z/6Ojy2dPd5h9J2M2zy6SMl4FSS6LtQ2tIWOtZKRokwECl50L1+2pJ
GHD7cEtYloHCUtXWH/tKQkuu4IiTAgNZu4T7n2sg4dOogVmtEgPRSyPXezXi
+Z2rEr+9noE2qzu3ezeT4OJYfVtyFwPZGi/X3fqThGNPhcY8jBlIS/7TWsUW
Esz7DPd+N2egM1V/RvlbSdhw6iM99jADdUQJ7s9pI2HcruaugisDqbg4bfz6
iwRj9QPXlTwYqFhoUM+/k4THM9ouq/gwEFs3xGRdFwkWEcMO7CB8/ZRdft7d
JLwupG/d/ZCBTokm/ujhkkC/HsM2SWAgVqT7Gg+ShDP7FVX2PWagJl+j1vm9
eJ6/2ZI2zxhoRf/Np6w+Eq5IWQ24vGOgLt4wK9HfJHzr+vXrYiUDPT5wzCQA
WyP7TPOlGgaC3TqsKexOfZ93AU0MZNOkY/p1AN8vEgs4138y0NNJh1adQfy8
tNzMCu9goKn5WW6PsPXdEqKj+xmoskhx6NQQCfFblMPjhvF+1EkOVmD/WZTj
nzzBQDG999coDJOQlvjOOXM2E0mka0V8xhau7dEroTPReImX/+JREuwfOGtV
LGGiI4rZbRbYBfZT66plmUhpZkV7HLYz7yKZBiUmShs7IbBqjITK97fFv6sw
0XlfJf0T2PJ3lgq0aTBRS7zG4UfYdcqqo6QWE2kO3NGTHsf3x0Q+d0CXibZw
TqqbY18r3twyqsdEB3O8FIKxNS1MK3lNmWimJLFvEPu+v2uc2HEmWjC3Vu3x
BAkjJrx3maeZqGodK+MTtsHSgBDps0wU8MYqfBKbJ+ee20oPJvr8sj936yQJ
+3zkHJR9mGhXUf8ie+zMXalH1K4y0eaBPWOB2DZtnN0QxkRLlFcmVWC/TN+m
qxPBRPKjqj5d2KIXqzW33WMiAZkPEnx/SCgRbllulMBERXF6kWxs6WZ7ltlj
JsqQD480wXZNHhQ6kM5EtQbI/ST2yk1z/hzJYyJ0qYr/LnZa8qPlXzi4n9Bh
t3RsVRGD3duK8Pp4bxQVYWu2R8SurGKiq36PxbnYHAP2+8haJrIZ7VelTZGw
Off78IIGJvIPu26yCHtn4IodvW1M5KM9q1oZu3rovZNVNxOF9u0FwDa1dIyq
7mOiuJNz6/SwG0rFSrSHcX/39Ynm2JYq+X2ZE0zkO1abZYPdEmnJkONhobK8
EH4HbNvZszbfmsNC7WFfnrhhn6nTjzgvxEKrmhNnB2MPafW/7hRjoW1GLaW3
sN0eh3ftY7FQgJrIxH1smujGxRVLWehtlmtsAraPRzNByLNQ5QTr3RNsvl/e
x1JXsZDutRLHLOxAQ/lQKRUWuhY9NzEPO3yZQysPwUJLFI+WFmHTgxcvdNJm
oaqr7m/KsO+P5Gi0bmWh8gsyFh+wZa0trE12slDLgcIHNdiJZTwBxUYstH3s
bugXbEW1hCwNcxZ6aZmo1oCdFrWjOcmChdzzsoKbsXMcbqwNsGUh9HvYtRWb
+Kqxf/IkC/3hfSnSgf1Gp9H3pBMLpZ1Lcu7E3vLEK7X5PAsZ2V+O7cZ+JyZX
Z+DBQs2KfQ+41Hy83vG88WGhk2amZ3qxP3aeVFS5xkISQqPi/dhmxsImscEs
NGd9Z8Rvaj4vsj0W32ShxgThwQFqPsv3J12+g9fjqqo8hN0aQvs4fJ+Flu//
qTeMbTcWO3EsjoXe1ATrj2BzD22Tq09moRsPvVVHqXlV9OzakcZCLotaeMew
h9VDz+dnsZCpacYLyhei1WNW5bGQUH/VoXFqXvxfy6M4LHR6Nm2Eso+jx9DC
Ihba/6rJbQJ7bqOMlFcZC+193NdLOWhLybb+Dyx0WzLabBJbKM3e8VAtnr+3
eiblcIlF92q+spBFfvvMP9gM76yizd9ZyNbh/Q7K0d3mvc/aWKjUknuVsqzJ
Hwn5bhY6nKDGoZz46qH27T4WCuF1JymvUtA9wT/MQq8Eg8SnsJ+GdoW7TbCQ
vhtdk7L6RDCne4YkmqtYvJdyro1q54E5kqjQTv4sZaLyi3DlfEm0f/itP+U3
GhfZSEgSFYgL3aes+1D6aLqYJEp+4J5KWTVCQK6IKYlWPQzOpywVNN5SLy2J
rtdkF1Ne4NMRQ8pJolGuWhXlsfOfrGcqSqKc5k11lNtPvZGWWCOJbh9c8I1y
jU3qt1XqkgguFLRS5uyLvK+1URJ10IM6KafsvmphiiSRuWMAl/IdXWeW/WZJ
JO7d2Ef5MvtQg+d2SbTy/N0Byo4qBndv7pJEO+mNQ5QtFdh7k40lEcl6NkJ5
w2KxLx8tJBG75dQ4ZeEZfXsmj0ki7TC1Scrn08z0Y65LokO1GVOUmw9ydLbl
SiJv8/FpP3oZrHJz3hKUOzU17XOsg0u/71+C/r4v6QVQrb1SNPY//x9+ES2J
"]], LineBox[CompressedData["
1:eJxF1Xc4lV8cAPBbyM5ISkn3vVcyM6Iy7ntOhaxKKlRkRKRll6IoJFFWSCq7
ZWWERDZlZCsiI6RcVyE7v/PS7/H+c5/P8x1n3HPeF7O8aGC9kkQipa4gkYjf
nn6Bt9EryZC0+IyCAee3OvxuZFi7QDwMEDNP8d+fgOIKM4ue390q8TOPDNl4
wxd93Pf2e7+PZDjS0TVL2MHIVX60mQyL5qWnCfuJn3pg1E6G/I8XxgkLBB/b
z9lJhvWUrb8JP5k+uOLdVzLc1/lihLCkpWa2Yy8ZCoSe/UH49Qe1M2L9ZCgi
q9FPeM/27ZvaB8mQWXb1V8K1DyUaAn+QYSJLRBthY2ayz246Gbo6Pq8j/O2c
oPIEgwxzalnLCNu3cNGf/SZDfe1zOYTnaEyxJhNk6Cvm92xxvknTR3inyNCv
e2UE4TU8o2xlM2T4W9ftBuHGAv9b2vNkGNSgeI5wyLktqz4ukKFkwh0DwgYb
i7yPrMRgTCGPEmH+D8eZ2pkxyCyltWax/vKElxkrBsdg+vBfon5rEKmfHYO/
Ol8XETZolbxux4VB8ciCu4T5fcrnGasx2P1znSHhxu3m7i58GBSw4hBcrO+d
mZlZg0HPwve180R98H03T0EMRnJecSfMB+WmWIQw+PWDDEa4fuSD652NGJxj
6n8zhxz0yHqCVwSDmGmAFmF9PZJzOBmNLztXNYvMOxv1eyMVg98jJlUI1z9X
cojdgsF9d6QezRD1xvUMMXEM+vbJjEwT9axnLyRLYhB3cJcmzPOahS4vg8Fo
TnfDKeQ6q5izObIYNIm9ZDeJfHeN6g81BQyO6zw5/Qf5QEmLbYkiBr1OsmpP
IK92sB/ctxOt3+cpzzhRv5nzdK0yWm/bsdzfRH1d4jcDNQwe/f0Z/iLqPeCp
TzgGL2wqS2Igc0t39JjuxmDo2bBBOnJNu4t5314MWvUlkoaRA27zfrXVxKBl
sjxjCJlrUOOLky4GW5+OwH4i/3738en9GDyW1vOol8hXv/r5mj4GYxUbSr8i
642tNWY+jMHz53enfUHmjEtvvX0Ug2EqQSafkT/o6x7lMcagt9d4ZQuy/0J/
U9hxDJ4M9KA3IHOYbmx4YoZB8ygHw/dEPufrg1ss0XlhlQsuI/Lf6Ne9sMKg
PUee8ztknTM/9eRsMLj69f65PGT29b7V2WcwyOPETM1Crqog66iew6Dx46q+
FOI8u+RXFV3A4AmZ48pPkdmaRsurnTD44xRHYCSR73VH/ZArBveo1V4PIvLl
xEpbL2Pw8anE0VvIrHdPFPV4YLBtx/h2F+QKtT+4jScGh4ReTNsh+/4MKhi+
gcH0wDGqOfIq7Yo3k7cw+PFXvb8WkT9pruzhj0E/A7U8VSI/aTZnZSAG1eAP
2W3ILMzy2dwhGBQ2/9jGi1yWUb09NAyDyqOXpknI3hanM9ZHYLBDQlN99C8D
ML97mEaNRuu7qK9Yg9yupq719TE6H0MFwjnIaW+Gu6NiMRiFbemOQT7+msbP
/xTtN4fOB3tkOcWBF7XP0f1hffnZEHlVxt29t5ORn+6/r4r8KuWrMykDg9sC
ZLpJyL5SftxvszAYdFXXsGeeAUyeyyVdysHgFMsFzSJktkSvtpG3GLTRUDR3
Q+6iSNq/eIfBrVt5Lx5GzoxpZDtdgkHOIcsSKeST0VSVzkp0P1/l/m2dYwDF
DTWNkR8wWMZvV/0cmT3S+eyRWgyukv8VfwU5K7Q8uroRgzp7B2mCyP58F5Ru
tWBQRfZRT/csA5jfE6zb8wndV3Le0efInHdsFvI6Mbirle6wHbmbjTfSpRuD
I3Gcs+Mz6H3qmysn34f6kaIFs5Atb7BbPvuOwaRbweWSyLluL8vCxzBYZ7kG
TE2h+zV52NTgDwYrktgfJCCfcpmb4J7G4De53UwHpoj7uX+rz18M0m/uL4+Y
RO/bkYl3cAUFpj44OrsT+c25x8ZzTBSoo8L2t/kPA1jbMm47sVNg4o8xURZk
lYEIiiwXBbofKBOLnEDvGyuY/2M1BUretU/fivzWLHjYQoAC7dkH1qqNo/eh
0faD+pspUE/IE+76zQDfmzsGOSkUWFbYGpnyiwEKDLw9K0Up8NZnQboIsu2B
lle4JAXKgM49EwwGKNS4JCCjRIFVIfPZF+gMEFa6OeX7Tgp0TqORSoYZ4Mzu
Ko0EFQqEwCOPF1mAJnRpI6TAmVXlCjE/GOCsYv5ndl0K5Gf/YOgzyABF9S3J
ufsp8BxbztrXAwyw9vzodRt9Cnwd3DjY088A7xK3iJUfpUCFmkvekt/Q92Rd
kKOnORrvHV+HRzeaX+YLDdlTFFi7J/2Cz1c0/4Pl67usKdC/YTTsVhcD2PjN
FKqepUBNitvxq18YIH/ainPShQIbuJwEN39C+xV+vSvxMgXu2Wx5Z7oV7a9C
1KsjVymQrBOyrq4FvX/PfjTK8KRA78Z+Zesm9P99UU44f4cCLQ+0sOvUofPy
bjXtWwwFzrnSj/aUoPN0QoI3NB7tv4jwFcNiBsie3Nu3O4kCd5iLNpe9YwAz
ObfbT15SIC75dyLgLTrfsX0tx19ToMfae3ffZzPACe/cCw3VFLiPZcZjKIkB
0slNuz3rKNB1bANtOAHd9wK6gGwDGr/L3HkwDt3XCUp+QCsFvtxqg1U+ZgAm
m0BWrR4KvC3eaCwZzgAvtS1jCv9Q4KGf+X2XbqL7Io3hYJoClepInuJe6P9c
3d3xbpYCPUM0VzdeQ9+nJtN1xSQqNNpjPchzhQHGTY/dLeWgQgG7dT1K9gyA
O+q7V4lQ4XB/KqvYCQaoPMKzQRujwrdRVO5Txuj7tbMu5z2VCtm1K1Iij6L7
Mac79kGcCoWzTdLoBxnglu8+u1oFKhRlOrYHV0fjReHGjZpU2Ort6eMqxQDH
POYnDLSpsD176KqqOAP0mr0NbdKlQtubEm1Tomg+oiofm/WpMGfdYIaJCAMI
pSlpth2nQsPcreVVvGi8UmnFLxeo8OZNvQG58REw8XMD70A4Faa2x8arZo+A
sEeDldEPqFDTuHg8LX0EbD+Ydf1wNBWmh+3CNyaPAIeM/YyiWCok+5oXtcaN
APplz7qHyVS4S+pCVs+9EdDPMhBwqIQKcY6mk9q2I6Bl8yv2AjoVouOp4Mo/
ApwbPIqdRpH3Kv2s4xoBa27quEmOUeHKbUzsm1lHwKGBvu8RU1R4dSbPL3GW
DmqTBascmUThp+n5bXrf6KBc2d1XXEgUvjSL4GfJooPsw/uYwtRFodwWC6lD
++nATzfXR3ifKExZcJQV2EcHJnsl2BK1RaHowD3rekgHK7dzcr8+IAqtbeQ9
FRXp4AD/R8FPxqLQfXzTxuQNdPC93lBS+LwofFxqY31yYBhsOHD6UMJ9UWiZ
+rBu7vIwuK7l8yRrQBSa9GVFPQ74CbBOnU/xPlvgGSY2eon3EFDZ6R0mpCAG
u4KfT8gLDAITkY/TK5rEoJ73Ad6GF9/AxIfAXnuvrVDCSaHj/nQPiGQ+6Wwg
Kg6ZjxlJOXd2gTVd2XEry8RhBVdnQcO3z4DFw+uIsoMEhAnJFX2RzYD0/GRa
L78kVG+nUyLSPwLHqLRA/hJJaFV0/bIapQLkzEXdKimThGxpN/Gmv+Vg7qSv
l2OlJLSfnOHz6CgHt6imLo01ktCbz8CS4345iE7mMA1pk4S5zHsUedjLQXmh
tTQ/XRKKnudS6hovBev7NlbzrZeCWkbbr7l9KQamGqzlxRukoN/77hev8otB
3NPfhQ6bpCAb4OJY8bAYSJ97n9FAkYKKwyMD/ceKwe4J16hgGSnYLFxTU/2p
CNixNp7h24v6tVul6r5+Bwqk/Nj4LkhB+7ULL+f688GO5nW1IfZSkHfoo0x2
aj5Id38aLOCErLXt8KNL+SCutmLD+stSsIoPmsyz5wO/iywym29IwUiytcRK
+TfAIPPGIZlwlO8xpqTnlwsGVTyitAuloLjwh797TbOBeR+XWXURGu+j09oj
0tmg/U40dX+pFKx3fMkdNZsFar7kJ+tXScHvNmLHqqKyQMa1mUKjRim4i2eL
ZmZHJnAvudRnPYDipalR320yAJ+Oo/SN1dKQd4Lbo/1oGogp5uFU4ZOGcv03
BzlmU4GccsrQrzXSMN077Wl5TCo4IP49yUIIxe9r2HXQU4D/qpPYblFpGDQ/
aRt0Nxkwl2oLklSk4WhI9uWTP56DUJXB8Rw1FB/Mu20Y+RxQMrybLgJpCD2t
dnRqPgcw9l3QV3VpSJYO2RGR+Ax4XFfifHdQGtonZSuUnnkK/qhipGvWqJ+g
ecxm7kTgk1nYpWSL+qV4yguWJQABKZMCuh2qr5+reHQ1AWzfEHHF1B7Vxz08
aD4cD+ynuCbUrqL5v+8PzGqOA0NZU0OzQSj+pannSVEM+CJT3+T2VhoWbUma
sOGIAk9+8nkwvZOG5mzdr2rjHwDL54fFAotR/8CuGGn8ARgSbbscUyENY+gj
Ic0ukeDPxq5NlfXSsFsvEBSPhgM+jmEbgX4U5w14FC8QBporZfgeD6L1eo3p
nS4IBZE+F99s/SENPVt3bN9gEwpEVoxxqTLQeC5knsMFIUB6avqVxbQ0JMW2
zU04BwPNAda5VG4ZCNWPGGSR7wL2BO3EXbwysOjj3uDMe4GgxuLOgRJ+ZPHa
OHdSIDjcuTq2ZR3K50wZsBq8A8yb12rOYcjV4ynGH26DqyXUIO0dKL/TVYC1
zwfgntbKTbtkoGd3dEj2eR+wEn/aa6IqA0nySi+5ZryBX56kkj1E8XWVyi/X
eYPwdPn2cB3UT81x2Pr0DZD+GIh+O4niL5Vr5J9cA2NXxlgtLJCZPjV2//AA
O4ye/uw8hVx3IN1e2QPk8/BkttkiTxQEb/p6FVR4du2udkQ+5hCxRs8NsJmG
bNFyQZ6cPyafehnoKmuyl19CLg8cY1pzGdT/SqkvdEdenVeV/s0VdFh6mGX4
ovl6phn5PnUGIkB+r+xtFD8h4/VMxBmYb+wXS76DfGdXrH6kExho0htJDELO
7A3eEOoIRtWFPR5Eofq1Re+HEu3Bqq35UZ6pyKQDtHkXO6DNdPHafDpyb1aV
XNoZEPCVYnklE9ljx46nw7aAL9JfwjkX+TR3rLizDRBmP55rU4Js2CzEk2UF
zPq5o7+VIUe02fzktgJxxcXXLSqRzcghsWdPga1XJPadqEG+pO1xWsESKPyc
ajnQisz/aqigzQy4VCbnVX9CvqwjLlNxEuTGmz/S6kAOSnt4Nd8U0EyqrPZ0
I7u6VOi+OQG0aiPGlH4gi7o0NrAYA//num0Zw8hyJicOixuBWp+FN7IMYn5n
hLr1DYEBbnNDYhx51U3OjMwjwDRtB9+mv8R+dkaeKDgEXh+fWl1P2gZJeFRz
wl99sHrVG66bTMhzeXfWaOqDIhMa2xAbcsCt+ILa/WA92wJLNCdyVtrs+HU9
4JBZxHRwNXKQ3nsnmi6gcKgvZK1Bfha1X+uzFriSzTJvI4gsbHhwc84+0GRe
ObNBCNnK5zR8ogm8c3T+eIogR04csw1UBwNWh+h6Eshyvr1P2iHAedf8XJBC
zj3JvJYZgoj85u8Z2whbhPecxYEWv/G39YrIRc6lP06pgpgCod7qHcham54a
TyqDaduOr9eUkclxF2oe7AIv3p3s+IYj+3l/5uLYAVaeJX+O2E2MLxVGalME
JwR7W3XUkfU1HbRebQdc560b07WRp/LrFALkgdX6rfWn9Ij57VNmC5ADBaXf
awUPIpuXHJKVlQUXNpx7734E2TPBPidGClSUy1TKGhEeHn0yLQE2OzDKeo8R
/TMFZk+Lg/pKxyItMyJ+0lvafQsQd1IsnLVAHuVdiKaIAi+RP/mpVsi8gnez
2ilAwcUtR8COWI9z/nYPMvAnq2ZXnkOOWTCIrxEBfdVzGVcuEv0qXq0qEAZh
FM/Ubmcinvv43Nh6QK/dnRx6ifCborU71wFNN6YXmleI/VsTvT1sLZj86JuY
fB2Z9Pzm2XB+oH9VK97sBrG+mFU2ynzgmRhHLL8PkX/RSrGPB6xorH5cfgsZ
ul3gdecGxz0Coy/7E/U5WpdUOUGG+MEoqUBiPkIlAZvZAWczb2TXPSIeuv+m
GCt4KxkWqn6fiFfKiYUzAYHWo8GTEUS/gMnrsyvAea91915EEePxX13rQQIV
0p8DTB8R9VdVShT+4iKfovx5Y4j6jNDWR7O4600Tv9I4wtxxYbum8Y/bRHxd
Exfj7uqkSdzTJ9brywvCP2UwrjGc+xKrjkUK0U/k9j7bX3iU7Xn+gTTC2U4a
FQxc7HhTu10G4XiPmolhPFNXOZ6RRfim2qsTP3BIe3LWOYcws0jS+CBes41F
cTqPsLDajYJ+fICvoWzlO8JMfguNPbgj087AW8WEzwQtCHXjC+PRR7nKCH/7
ocHZiQcMrBQJriCs4PhZrB1f/8l2YO17ws5RC15teOL7utSoasIBF9XWt+AK
+YqXNtcR3nBav78RL0yOAgn1hLvCdvTX47qPSWwSTYTV6zXE6/BP907Xp7QQ
DntC6vyAW3nVRCp8ImzV2NlTif9yVLDIaSecoOstV45fs4qUUOskzPZ1vqQE
5zD8+6voK+Hm8MzQIjxin9UbjV7CU7+bVApwUeUPNz58I2wbc+V1Hp4uKad7
cJDw9x7V4Nc4TTh8TfMQ4fXCD0oy8Q/ccx3Gw4QjhVL2vMINFywSOkcIw3Bt
gVS8b7TynOUvwkUq9qIvcPteGaXBMcK8TRrPk/C5ptD5s38IdzOrRcTjt8un
y0enCNtXpvfF4II5ZnddZhf78ZawP8Ljn5Ubzswv5tNy+iJxuSipzddJsshk
2SH1+/jbO8GDTEyEi545iITg2h6TaX4si8b9yu/irRdML3OzLZpdhtMftzQv
hSEchGHF/UkfnHFIgn0d96KjMl1v4O577zU85CHsWfxn+BrOrjTxgMy/6PXu
tW54uNgJy0SBRWewOLrglPXFkpLrCJOeVBQ54GnsW8dShRbtl6BxHlebDcjf
LrzoazmstnjV8O+buSKLZvodfwo/2mWsR8MWLZc0YYb3fiwUKKEu2vxmzzH8
YrFop6bYogUOdRzB5zL8E6vFF62ukKeP+yWMnteXWnRRS4oOvjbccEeLzFI/
L0kNPO7W27/H5BbN25AB8W1ulMouhUVXMSuo4Pl2fvdOKS060uKcIq5lMmL0
fedSfl+iLN68/wj5vMqiSYUm4rgFePP9l9qiYX4MBR+RI79yBYv2jNMWxq9Q
fN1mdy+afM9gLc4qMLzbU30p//cADx7GYsDBsm+p34MUVpw8mdN4W3sprnBh
BZ7yfdPD1XpL/ZIcpml+j3zMuw4s5XPn/KJZGdC3pB5acpXFdxpkPfrT48iS
lUK7acJv36bvN1qyP2ilTdmLum46vmR311pa05YAVbrJkutVS2mp7WOkArMl
mxfk0vzvnagIsFyy3OE02mn10jsm1v/iXvG0PdOSh6Rtl+zZFUETSQ0RnLNb
MkwOoE1bznRUn/8X7/OkNa+zjH1ov2SSuxMtveb96bNO//zXmhbgJS+t6vrP
e4xptjse/OJw++f1OjT1n6Sc9qv/bK5K2xxj6/7i2j8XSdFmjtTvvuL1z54b
aa3su1h1vP83By2j8EmN0K3/PaV214k1ZOj2P5MG1OzELxrlBfzvZjWNzlbh
2/f+d5EaOQTvNQ753+lqc5pJT8Xv/28S6dMs9/mpiGVnpbsoVEUtO8i6czLi
0f+OUTu7QaPAJmbZFG8BLdak5fy/u9y5254t+zO9rzHp5XJ+kFGmqear5fiC
pIGTz9tlf2m495ipadm5vpOnmlqWHaZqJhH/adm6iduy9nQt+83l2vdeQ8sO
l1G6d2h42Q690UcwxrLF9c59LRpfNvOK5oSgyWV3Z6vamc8s+61dvKzc/LIj
NnNOLCws+z/I/KZy
"]]},
Annotation[#, "Charting`Private`Tag$37827#1"]& ], {}}, {}},
AspectRatio->NCache[
Rational[1, 4], 0.25],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Full,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 16}, {0., 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{{{0,
FormBox["0", TraditionalForm]}, {4,
FormBox["4", TraditionalForm]}, {8,
FormBox["8", TraditionalForm]}, {12,
FormBox["12", TraditionalForm]}, {16,
FormBox["16", TraditionalForm]}}, {{0,
FormBox["0", TraditionalForm]}, {1,
FormBox["1", TraditionalForm]}, {2,
FormBox["2", TraditionalForm]}, {3,
FormBox["3", TraditionalForm]}, {4,
FormBox["4", TraditionalForm]}, {5,
FormBox["5", TraditionalForm]}, {6,
FormBox["6", TraditionalForm]}, {7,
FormBox["7", TraditionalForm]}, {8,
FormBox["8", TraditionalForm]}, {9,
FormBox["9", TraditionalForm]}, {10,
FormBox["10", TraditionalForm]}, {11,
FormBox["11", TraditionalForm]}, {12,
FormBox["12", TraditionalForm]}, {13,
FormBox["13", TraditionalForm]}, {14,
FormBox["14", TraditionalForm]}, {15,
FormBox["15", TraditionalForm]}, {16,
FormBox["16", TraditionalForm]}}}]], "Output",
CellLabel->
"5/3/24 07:35:34 \
Out[341]=",ExpressionUUID->"a172c69e-c750-46f8-b516-3e951b44fdee"],
Cell[BoxData["\<\"0.5-0.5*(-1)**floor(X/8)+(-1)**floor(X/8)/(1+e**(8*((-8+np.\
mod(X,8))**(-1)+np.mod(X,8)**(-1))))\"\>"], "Output",
CellLabel->
"5/3/24 07:35:41 \
Out[342]=",ExpressionUUID->"622e8a38-c7e5-45db-b117-598070ffeba0"]
}, Open ]]
},
WindowSize->{1672, 980},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)",
StyleDefinitions->Notebook[{
Cell[
StyleData[StyleDefinitions -> "Default.nb"]],
Cell[
StyleData[All], TextAlignment -> Center]}, WindowSize -> {785, 884},
WindowMargins -> {{0, Automatic}, {Automatic, 0}}, Visible -> False,
FrontEndVersion ->
"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions ->
"PrivateStylesheetFormatting.nb"],
ExpressionUUID->"799ecfb4-cc50-42a9-a465-4e67113aecaf"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 2808, 77, 176, "Input",ExpressionUUID->"f5f67ce7-c8f0-4363-9182-367f7658508b"],
Cell[3391, 101, 4972, 111, 422, "Output",ExpressionUUID->"c478c8b1-84af-424e-b861-3547031dc110"],
Cell[8366, 214, 180, 3, 46, "Output",ExpressionUUID->"7827bd56-0553-427f-a3b1-8be64aa742de"]
}, Open ]],
Cell[CellGroupData[{
Cell[8583, 222, 3549, 104, 195, "Input",ExpressionUUID->"b4d0054f-f9cf-4438-8d1f-20a75cc5473c"],
Cell[12135, 328, 18763, 338, 422, "Output",ExpressionUUID->"a172c69e-c750-46f8-b516-3e951b44fdee"],
Cell[30901, 668, 233, 4, 46, "Output",ExpressionUUID->"622e8a38-c7e5-45db-b117-598070ffeba0"]
}, Open ]]
}
]
*)

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 MiB

260670
∣❁∣✤✻ᕭᕮᗩߦറߦᗩᕭᕮ✻✤∣❁∣/𖡹ИNⓄⵙ✣ᑐᑕИNᑎꗳ𖡹ꗳᑎИNᑐᑕ✣ⵙⓄИN𖡹   𖡗ᔓᔕᑎⵙ⚭ᗩꗳ𖡗ꗳᗩ⚭ⵙᑎᔓᔕ𖡗   𖡹ИNⓄⵙ✣ᑐᑕИNᑎꗳ𖡹ꗳᑎИNᑐᑕ✣ⵙⓄИN𖡹/𖣠⚪ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⚪𔗢⚪🞋⚪𔗢⚪ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⚪𖣠/𖣠⚪ᔓᔕᴥᗱᗴИNᴥⓄᑐᑕ𖣓✤옷ᕤᕦꖴᗩᴥ✤ᔓᔕ⚪𔗢⚪🞋⚪𔗢⚪ᔓᔕ✤ᴥᗩꖴᕤᕦ옷✤𖣓ᑐᑕⓄᴥИNᗱᗴᴥᔓᔕ⚪𖣠/𖣠⚪ᑐᑕꖴ⚭ᑎᑐᑕ⚪𔗢⚪🞋⚪𔗢⚪ᑐᑕᑎ⚭ꖴᑐᑕ⚪𖣠/𖣠⚪ᙁᗩꖴᗝᗩᴥ⚪𔗢⚪🞋⚪𔗢⚪ᴥᗩᗝꖴᗩᙁ⚪𖣠/𖣠⚪✤Ⓞ옷ᔓᔕИNᗱᗴᴥᑐᑕᔓᔕ⚪𔗢⚪🞋⚪𔗢⚪ᔓᔕᑐᑕᴥᗱᗴИNᔓᔕ옷Ⓞ✤⚪𖣠/𖣠⚪ᙁᗩᙏᴥⓄꗳИNⓄᑐᑕ⚪𔗢⚪🞋⚪𔗢⚪ᑐᑕⓄИNꗳⓄᴥᙏᗩᙁ⚪𖣠/𖣠⚪옷ᔓᔕᗱᗴᙏ⚪𔗢⚪🞋⚪𔗢⚪ᙏᗱᗴᔓᔕ옷⚪𖣠/XHG.⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᑐᑕ⚪ᔓᔕ⚪◯⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪◯⚪ᔓᔕ⚪ᑐᑕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪.GHX Normal file

File diff suppressed because one or more lines are too long

Some files were not shown because too many files have changed in this diff Show more